博客
关于我
逻辑回归_训练多元分类器
阅读量:378 次
发布时间:2019-03-05

本文共 1576 字,大约阅读时间需要 5 分钟。

逻辑回归_训练多元分类器

一对多

# 训练多元分类器from sklearn.linear_model import LogisticRegressionfrom sklearn import datasetsfrom sklearn.preprocessing import StandardScaler# 加载数据iris = datasets.load_iris()features = iris.datatarget = iris.target​scaler = StandardScaler()features_standardized = scaler.fit_transform(features)# multi_class="ovr"   表示一对多的逻辑回归    另外一种是MLR 多元逻辑回归logistic_regression = LogisticRegression(random_state=0, multi_class="ovr")#logistic_regression_MNL = LogisticRegression(random_state=0, multi_class="multinomial")# 训练模型model = logistic_regression.fit(features_standardized, target)DiscussionOn their own, logistic regressions are only binary classifiers, meaning they cannot handle target vectors with more than two classes. However, two clever extensions to logistic regression do just that. First, in one-vs-rest logistic regression (OVR) a separate model is trained for each class predicted whether an observation is that class or not (thus making it a binary classification problem). It assumes that each observation problem (e.g. class 0 or not) is independentAlternatively in multinomial logistic regression (MLR) the logistic function we saw in Recipe 15.1 is replaced with a softmax function:P(yI=k|X)=eβkxi∑Kj=1eβjxiP(yI=k|X)=eβkxi∑j=1Keβjxi where  P(yi=k|X)P(yi=k|X)  is the probability of the ith observation's target value,  yiyi , is class k, and K is the total number of classes. One practical advantage of the MLR is that its predicted probabilities using predict_proba method are more reliableWe can switch to an MNL by setting multi_class='multinomial'

转载地址:http://xprg.baihongyu.com/

你可能感兴趣的文章
Netty工作笔记0074---handler链调用机制实例1
查看>>
Netty工作笔记0075---handler链调用机制实例1
查看>>
Netty工作笔记0076---handler链调用机制实例3
查看>>
Netty工作笔记0077---handler链调用机制实例4
查看>>
Netty工作笔记0078---Netty其他常用编解码器
查看>>
Netty工作笔记0079---Log4j整合到Netty
查看>>
Netty工作笔记0080---编解码器和处理器链梳理
查看>>
Netty工作笔记0081---编解码器和处理器链梳理
查看>>
Netty工作笔记0082---TCP粘包拆包实例演示
查看>>
Netty工作笔记0083---通过自定义协议解决粘包拆包问题1
查看>>
Netty工作笔记0084---通过自定义协议解决粘包拆包问题2
查看>>
Netty工作笔记0085---TCP粘包拆包内容梳理
查看>>
Netty常用组件一
查看>>
Netty常见组件二
查看>>
Netty应用实例
查看>>
netty底层——nio知识点 ByteBuffer+Channel+Selector
查看>>
netty底层源码探究:启动流程;EventLoop中的selector、线程、任务队列;监听处理accept、read事件流程;
查看>>
Netty心跳检测
查看>>
Netty心跳检测机制
查看>>
netty既做服务端又做客户端_网易新闻客户端广告怎么做
查看>>