博客
关于我
逻辑回归_训练多元分类器
阅读量:378 次
发布时间:2019-03-05

本文共 1576 字,大约阅读时间需要 5 分钟。

逻辑回归_训练多元分类器

一对多

# 训练多元分类器from sklearn.linear_model import LogisticRegressionfrom sklearn import datasetsfrom sklearn.preprocessing import StandardScaler# 加载数据iris = datasets.load_iris()features = iris.datatarget = iris.target​scaler = StandardScaler()features_standardized = scaler.fit_transform(features)# multi_class="ovr"   表示一对多的逻辑回归    另外一种是MLR 多元逻辑回归logistic_regression = LogisticRegression(random_state=0, multi_class="ovr")#logistic_regression_MNL = LogisticRegression(random_state=0, multi_class="multinomial")# 训练模型model = logistic_regression.fit(features_standardized, target)DiscussionOn their own, logistic regressions are only binary classifiers, meaning they cannot handle target vectors with more than two classes. However, two clever extensions to logistic regression do just that. First, in one-vs-rest logistic regression (OVR) a separate model is trained for each class predicted whether an observation is that class or not (thus making it a binary classification problem). It assumes that each observation problem (e.g. class 0 or not) is independentAlternatively in multinomial logistic regression (MLR) the logistic function we saw in Recipe 15.1 is replaced with a softmax function:P(yI=k|X)=eβkxi∑Kj=1eβjxiP(yI=k|X)=eβkxi∑j=1Keβjxi where  P(yi=k|X)P(yi=k|X)  is the probability of the ith observation's target value,  yiyi , is class k, and K is the total number of classes. One practical advantage of the MLR is that its predicted probabilities using predict_proba method are more reliableWe can switch to an MNL by setting multi_class='multinomial'

转载地址:http://xprg.baihongyu.com/

你可能感兴趣的文章
Luogu2973:[USACO10HOL]赶小猪
查看>>
mabatis 中出现< 以及> 代表什么意思?
查看>>
Mac book pro打开docker出现The data couldn’t be read because it is missing
查看>>
MAC M1大数据0-1成神篇-25 hadoop高可用搭建
查看>>
mac mysql 进程_Mac平台下启动MySQL到完全终止MySQL----终端八步走
查看>>
Mac OS 12.0.1 如何安装柯美287打印机驱动,刷卡打印
查看>>
MangoDB4.0版本的安装与配置
查看>>
Manjaro 24.1 “Xahea” 发布!具有 KDE Plasma 6.1.5、GNOME 46 和最新的内核增强功能
查看>>
mapping文件目录生成修改
查看>>
MapReduce程序依赖的jar包
查看>>
mariadb multi-source replication(mariadb多主复制)
查看>>
MariaDB的简单使用
查看>>
MaterialForm对tab页进行隐藏
查看>>
Member var and Static var.
查看>>
memcached高速缓存学习笔记001---memcached介绍和安装以及基本使用
查看>>
memcached高速缓存学习笔记003---利用JAVA程序操作memcached crud操作
查看>>
Memcached:Node.js 高性能缓存解决方案
查看>>
memcache、redis原理对比
查看>>
memset初始化高维数组为-1/0
查看>>
Metasploit CGI网关接口渗透测试实战
查看>>